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Abstract

A nonuniform, fast Fourier transform can be used to reduce the computational cost of the empirical characteristic function
(ECF) by a factor of 100. This fast ECF calculation method is applied to a new, objective, and robust method for estimating the
probability distribution of univariate data, which effectively modulates and filters the ECF of a dataset in a way that yields an
optimal estimate of the (Fourier transformed) underlying distribution. This improvement in computational efficiency is leveraged
to estimate probability densities from a large ensemble of atmospheric velocity increments (gradients), with the purpose of
characterizing the statistical and fractal properties of the velocity field. It is shown that the distribution of velocity increments
depends on location in an atmospheric model and that the increments are clearly not normally distributed. The estimated
increment distributions exhibit self-similar and distinctly multifractal behavior, as shown by structure functions that exhibit
power-law scaling with a non-linear dependence of the power-law exponent on the structure function order.

1 Introduction

Research often calls for the estimation of probability distri-
bution functions (PDFs) derived from empirical data. For in-
stance, information about a distribution may be necessary to as-
sess whether differences between two sets of data are statistically
significant, or it may be required to estimate the probabilities that
outliers come from the distribution of a given dataset. A variety
of PDF approximations (e.g., histograms) are frequently used to
represent the relative occurrence of data values.

This paper describes a computationally efficient method to
estimate probability distributions based on recent work by Bernac-
chia and Pigolotti [1]. We have developed this technique to sup-
port research on scaling in the Earth’s atmosphere, but the method
should be generally applicable across the physical and engineer-
ing disciplines. We have initially applied this method to aid
the development of a theory about resolution dependence in at-
mospheric models. The following discussion necessarily makes
heavy use of some terms that are commonly used in the atmo-
spheric sciences but that may be unfamiliar to researchers from
other fields. Appendix A provides definitions for some of these
terms.

Many studies also require strictly non-parametric estimation
procedures so that the resulting PDFs are free of a priori assump-
tions regarding their underlying functional forms. In our par-
ticular application, the normality of velocity gradients is a key

hypothesis that should be proven or disproven from the emer-
gent properties of the data itself without recourse to Gaussian fit-
ting. The traditional methods for estimating PDFs, e.g. binning
methods and kernel density techniques, require specification of a
bandwidth parameter that heavily influences the shape of the re-
sulting PDF [2, 3, 4]. While methods exist for estimating an opti-
mal bandwidth, these methods usually require some assumption
about the shape of the underlying PDF [5, 4, 1]. Given that our
application requires an unbiased determination of the normality
of the velocity increments, estimation methods utilizing such as-
sumptions would not be suitable for our analysis. While methods
do exist for testing normality (e.g., [6]), our analysis additionally
requires that we estimate various moments of the distribution.
One can readily and efficiently perform tests for normality and
estimate moments if an estimate of the underlying distribution is
available.

For these reasons, the method of Bernacchia and Pigolotti
[1] for estimating PDF distributions should in principle be well
suited for such an application because it provides an objective
PDF estimate that requires no prior assumptions regarding the
underlying distribution. Bernacchia and Pigolotti [1] derive an
expression for a data-derived, optimal kernel [7] and the resulting
and self-consistent kernel density estimate; their kernel deriva-
tion method is even optimal for multi-modal data. This ‘self-
consistent’ estimate converges on the true distribution at a faster
rate than traditional binning or kernel density estimation methods
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[1].
However, during our initial attempts to apply the PDF estima-

tion method of Bernacchia and Pigolotti [1] (hereafter BP11), we
discovered that its computational performance is not practicable.
Most of the BP11 algorithm is implemented in inverse Fourier
space and is based on transforming the data under analysis to
inverse Fourier space by computing its empirical characteristic
function, Cn, given by:

Cn =
N

∑
j=1

ei·χ j ·τn , (1)

where χ j are a collection of data points that are presumed to come
from a random distribution, N is the number of data points, and
τn are the frequencies at which the empirical characteristic func-
tion is calculated. Calculation of Cn is equivalent to an inverse
discrete Fourier transform in which the Fourier coefficients are
a j = 1 for each of the χ j data points. Since the direct calculation
of the discrete Fourier transform is notoriously slow, it would
be preferable to evaluate this discrete Fourier transform using
the fast Fourier transform (FFT) method of Cooley and Tukey
[8]. However, the FFT is not directly applicable since it requires
that the Fourier coefficients are specified on an evenly-spaced
grid. This requirement is violated since the χ j data points are
presumed to be randomly distributed, and so their spacings are
also random.

In this paper, we show how to accelerate the computational
performance of the BP11 density estimation method using the
nonuniform FFT (nuFFT) method of Greengard and Lee [9] to
approximate the empirical characteristic function (Section 2). We
demonstrate that this method substantially improves the speed of
the BP11 density estimation method without compromising its
accuracy or convergence properties (Section 3). We apply this
method to estimate the PDF of velocity increments from atmo-
spheric model output in support of a hypothesis relating veloc-
ity increments to model resolution dependence (Section 4). We
show that the increments from a specific atmospheric model are
generally bell-shaped but demonstrably non-Gaussian. Further,
we use the estimated distributions to show that the velocity field
is self-similar and multifractal. This ability to rapidly charac-
terize increment distributions has thus proved invaluable in our
development of a robust theory on resolution dependence in at-
mospheric models.

2 Estimating the self-consistent density via FFT

2.1 Summary of the BP11 self-consistent density estimation method

Kernel density estimation is a widely used method for es-
timating the probability distribution function (PDF) of a given
dataset (e.g., [2, 3]), in which the PDF is approximated as a
normalized sum of kernel functions K(χ) centered on each data
point χ j:

f KDE(χ) =
1
N

N

∑
j=1

K(χ−χ j).

The choice of K(χ)–particularly the width of K–can heavily
influence f KDE , and there is a host of literature devoted to choos-
ing the kernel width. Except in some specific circumstances (e.g.,
the data are known to be normally distributed [2]), the choice of
the kernel and the kernel width are subjective [10, 1, 4]. Bernac-
chia and Pigolotti [1] recently derived a method for objectively
estimating the probability distribution function (PDF) of a uni-
variate dataset. They show that the dataset itself can be used to
derive a kernel (both its shape and width) in an objective, data-
driven way. We summarize the essential details of the derivation
and the method here.

The inverse Fourier transform of the KDE estimate is simply
the product of the transform kernel and the ECF of the data; we
derive this relationship here, since it is relevant for understanding
the role of the nuFFT in the BP11 method. Recognizing that a
kernel density estimate is equivalent to a sum of convolutions
between a kernel function and delta functions centered on the
data:

f KDE(χ) =
1
N

N

∑
j=1

K(χ−χ j)

=
1
N

N

∑
j=1

∞∫
−∞

K(s) ·δ (χ−χ j− s)ds

=
1
N

N

∑
j=1

K(χ)∗δ (χ−χ j),

the kernel density estimate can readily be transformed to its in-
verse Fourier-space representation, φ KDE using the convolution
theorem:

φ
KDE(τ) = Fτ

−1 [ f KDE]
= Fτ

−1

[
1
N

N

∑
j=1

K(χ)∗δ (χ−χ j)

]

= κ(τ) · 1
N

N

∑
j=1

eiχ jτ

= κ(τ) ·C (τ),

where Fτ
−1 represents the inverse Fourier transform from data

space, χ , to inverse Fourier space, τ; κ represents the inverse
Fourier transform of K; and C represents the empirical charac-
teristic function of the data.

Bernacchia and Pigolotti [1] use this relationship and the re-
sult of Watson and Leadbetter [7], which states that the mean
squared error of a kernel density estimate is minimized if the ker-
nel satisfies the equation: κ̂ = N · (N− 1+ |φ |−2)−1. They use
this optimal kernel to provide an equation for the optimal PDF
estimate (in inverse Fourier space):

φ̂(τ) = κ̂(τ) ·C (τ) = C (τ) · N
N−1+ |φ |−2 . (2)
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Since the underlying distribution (and its transform, φ ) is as-
sumed to be unknown, they derive a solution to Equation 2 us-
ing an iterative procedure in which an initial guess at φ , φ0, is
used to estimate φ̂1 which is then used as the next guess at φ to
estimate φ̂2, and so on. They show that if this iterative proce-
dure converges, that it will converge to a solution φ sc = κsc ·C
(which provides a self-consistent solution to Eqn 2: φ sc(τ) =
C (τ) ·N · [N− 1+ |φ sc(τ)|−2]−1), provided κsc satisfies the fol-
lowing equation, which is a function of the ECF amplitude:

κ
sc(τ) =

N
2(N−1)

[
1+

√
1− 4(N−1)

N2|C (τ)|2

]
IA(τ), (3)

where IA(τ) represents a frequency filter that is 1 for the set of
accepted frequencies A (defined below), and 0 otherwise.

In order for Equation 3 to provide a stable solution to Equa-
tion 2, the set of accepted frequencies must be specified such
that |C (τ)|2 ≥ 4(N − 1)N−2 for τ ∈ A. Further, the frequency
set A may exclude an arbitrary additional subset of otherwise ac-
ceptable frequencies, which reflects the arbitrariness of the initial
guess φ0 of the iterative solution. Bernacchia and Pigolotti [1]
show that φ sc converges to the true underlying distribution as N
increases, provided that a number of conditions are met, includ-
ing integrability of the characteristic function and boundedness
of A. The stability condition on A forces κsc(τ) to be real-valued,
implying that its data space representation Ksc(χ) is symmetric.

Finally, this self-consistent estimate can be Fourier transformed
to obtain the data-space estimate of the PDF: f SC(χ)=Fχ [κ

sc(τ) ·C (τ)].
Provided that the ECF has been calculated, calculation of κsc(τ)
is trivial, so the bulk of the cost of computing f SC(τ) comes from
the computation of the ECF.

2.2 Reducing the computational cost of the ECF using a nuFFT

While exploring this BP11 density estimation method, it be-
came clear that the ECF itself is a type of direct Fourier transform
(DFT):

C (τ) ∝

N

∑
j=1

a j · eiχ jτ ,

where χ j represents abscissa values in data space, τ represents
abscissa values in inverse Fourier space, and the a j Fourier coef-
ficients are all 1. Since the χ j values are assumed to be randomly
distributed, they presumably are not regularly spaced, which ex-
cludes the possibility of using a standard FFT method to eval-
uate the DFT. However, the nonuniform FFT (nuFFT) method
described by Greengard and Lee [9] is specifically designed to re-
duce the computational cost of DFTs on irregularly-spaced data.
The nuFFT method can be summarized as follows.

An arbitrary dataset of abscissa and ordinate pairs, χ j and a j,
can be viewed as a continuous function that is a sum of weighted
delta functions:

a(χ) =
N

∑
j=1

a j ·δ (χ−χ j).

Convolution of a(χ) with a Gaussian gh spreads the delta func-
tions across the abscissa, which results in a smooth curve: a′(χ)=
a(χ)∗gh(χ). By the convolution theorem, the Fourier transform
of a′(χ), c′(τ), is proportional to the Fourier transform of a(χ),
c(τ):

c′(τ) = Fτ

(
a′(χ)

)
= Fτ (a(χ)∗gh(χ))

= c(τ) · g̃h(τ),

where g̃h(τ) is the Fourier transform of gh.
If the abscissa is sampled at regular intervals, χk, then a FFT

technique can readily be used to approximate the Fourier trans-
form of a′(χk). Finally, the convolution theorem is used to decon-
volve c′(τn) (divide c′ by g̃h), which results in an approximation
of the discrete Fourier transform of the irregularly-spaced (χ j,a j)
data. Greengard and Lee [9] show that the nuFFT can approxi-
mate the DFT with arbitrary accuracy, which is controlled by the
interaction of three main factors: the width h of the convolving
Gaussian; the number surrounding χk values at which the convo-
lution is calculated for each (χ j,a j) point; and the spacing of the
χk grid. The speed of the nuFFT method, which is a trade-off for
accuracy, is also controlled by these three factors.

With respect to using the nuFFT to calculate the ECF, the (χ j,
a j) abscissa/ordinate pairs are identically (χ j,1), where χ j repre-
sent the random (irregularly spaced) data. With all the a j values
set to 1, the convolution step effectively reduces to a (unnormal-
ized) kernel density estimate of the data:

a′(χ) =
N

∑
j=1

gh (χ−χ j) .

So in statistical terms, the essential steps of the nuFFT approxi-
mation of the ECF can be summarized as: (1) perform a kernel
density estimate (on a regular grid), (2) use an inverse FFT to
transform the kernel density estimate to inverse Fourier space,
and (3) divide the transformed density by the inverse Fourier
transform of the kernel function.

2.3 A Fast BP11 algorithm

The following steps summarize the algorithm that we use to
perform a fast and efficient calculation of the BP11 density es-
timate (for conciseness, we hereon express functions at a given
grid point using the function symbol and the corresponding grid
subscript: e.g., Cn ≡ C (τn)):

1. Configure a regular grid and its transform grid: χk and τn.

2. Specify a Gaussian kernel gh(x) = exp
[
−(x/h)2

]
.

3. Convolve the data with the Gaussian to obtain a (unnor-
malized) kernel density estimate:

f ′k =
1
N

N

∑
j=1

χ j ·gh

(
χk−χ j

h

)
.
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4. Perform an inverse FFT of the kernel density estimate to
obtain its transform: φ ′n = F−1

τn ( f ′k).

5. Divide φ ′n by the transform of the Gaussian kernel to de-
convolve the FFT and obtain an estimate of the empirical
characteristic function: Cn ≈ φ ′n · [g̃(τn)]

−1.

6. Calculate the self-consistent kernel transform κsc
n (Eqn 3).

7. Calculate the self-consistent PDF transform: φ SC
n = κsc

n ·
Cn.

8. Perform an FFT to obtain the self-consistent PDF estimate:
f sc
k = F (φ sc

n ).

If applied naïvely, the convolution in step (3) can be as ex-
pensive as the direct DFT calculation (or more so). For N data
points, a full calculation of the convolution requires O(N2) cal-
culations, whereas the direct DFT calculation requires O(N ·M)
calculations for M frequency points and hence would be faster
if M < N. The speed of the convolution can be dramatically
improved if the Gaussian contribution from each of the χ j data
points is only applied to a limited set of q surrounding points. To
this end, Dutt and Rokhlin [11] provide an expression for spec-
ifying the width of the Gaussian h and the point-width q of the
convolution such that the resulting FFT is the same as the direct
DFT within a specifiable accuracy. The convolution part of this
algorithm requires O(N ·q) calculations and the FFT portion re-
quires O(M · logM) [8]. Simple algebraic manipulation can show
that if q<M and logM�N, then N ·q+M ·logM <N ·M, and so
the nuFFT is theoretically faster than the direct DFT calculation.
These conditions also imply that the nuFFT-based calculation is
theoretically O(M/q) times faster than the direct calculation.

To simplify the analysis of velocity increment PDFs and to
provide a static grid on which all of the estimated PDFs can be
stored, we standardize the data (i.e., χ j = (χ ′j − χ̄) ·σ−1

χ ) prior
to applying the density estimation algorithm (χ̄ and σχ are the
mean and standard deviation of the original χ ′j data respectively).
We specify χk as 4,097 evenly-spaced points from -20 to 20 unit
standard deviations. Since in our analysis the χ j data points are
all real, the Fourier transform of these points has Hermitian sym-
metry and hence the redundant negative frequency components
of the transform may be ignored. Therefore the χk grid yields
a transform grid τn with 2,049 evenly-spaced frequency points.
We only consider the lowest half of the frequency points (i.e., we
set Cn = 0 for n > 1,025) since the nonuniform FFT method is
only guaranteed to provide a good approximation over this range
[11]. Following Dutt and Rokhlin [11], we specify the width of
the convolution kernel as h=1.5629, and we apply the convolu-
tion to the q=28 χk nearest points surrounding each χ j data value.
We find that this configuration produces an approximation of the
ECF that differs from the exact DFT calculation by less than 10−7

over all considered frequencies (see Section 3 and Figure 1).
We also note that we implemented the selective frequency fil-

ter, In, in a slightly different manner than Bernacchia and Pigolotti

[1]. They show that the self-consistent density estimate con-
verges on the true density provided the filter In is set to 1 for some
subset of the frequencies for which C is above the estimate sta-
bility threshold given by |Cn|2 ≥ 4 · (N−1) ·N−2 and set to 0 for
all other frequencies. Whereas they choose the subset based on a
frequency cut-off t∗ such that C is above the stability threshold
for half of the frequencies within [−t∗, t∗], we choose a cut-off
frequency based on the occurrence of three consecutive C val-
ues below the stability threshold. In our implementation In = 0
for all n > n∗, where n∗ is the index of the lowest frequency for
which Cn∗+1, Cn∗+2, and Cn∗+3 are below the stability thresh-
old. We choose this criterion because it is fast to implement and
we find that it avoids an occasional, spurious leakage of high-
frequency components that manifests as high-frequency waves
superimposed on the density estimate. Bernacchia and Pigolotti
[1] note that the selection of the subset of frequencies is arbitrary
and corresponds to the arbitrary choice of initial density estimate
in the iterative procedure that they use to derive the expression for
φ̂ . As long as the subset is bounded and the bound grows with
N, a self-consistent estimate will converge. Our filter choice sat-
isfies these criteria for integrable characteristic functions, since
the stability threshold decreases with increasing N and therefore
higher frequencies are permitted as N increases. Therefore our
implementation of the In filter maintains the convergence proper-
ties of the BP11 density estimate (see Section 3 for verification
of this).

3 Evaluating against artificial data

3.1 N−1 convergence for the nuFFT-based method

To show that the FFT-based approximation of the empirical
characteristic function C (FFT ) reproduces the exact and direct
calculation C (DFT ) at high precision, we compare the two quan-
tities calculated from the samples drawn from a normal distribu-
tion with sample sizes ranging from 64 to 4,096. Figure 1a shows
the absolute difference between the two quantities, |C (FFT ) −
C (DFT )|, as a function of frequency for several different sample
sizes. The FFT-based estimate differs from the true estimate by
less than 10−7 or less over the entire frequency range. For refer-
ence, the inset of Figure 1 shows C (FFT ).

Because the FFT-based approximation of the ECF differs from
the true calculation of the ECF by such a small amount, the con-
vergence properties of the BP11 density estimate are unaffected.
Figure 1b shows the mean squared error, E2(N) = ∑

N
j |N (χi)−

f̂ (χi)| ·∆χ , where N (χ) is the normal distribution and ∆χ is
the grid spacing. E2(N) declines following N−1 for sample sizes
ranging from 21 to 219 in agreement with the convergence rate
presented by BP11. While the convergence-rate of the FFT-based
method is in accord with the convergence rate from BP11 over the
range of sample sizes shown, the FFT-based method should have
a lower-bound on E2 that is controlled by the approximation er-
ror, ε = |C (FFT )−C (DFT )| ∼ 10−7. If the approximation-error of
the density estimate, | f̂ (FFT )− f̂ (DFT )|, is larger than the nuFFT
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Figure 1: (a) The absolute difference between the FFT approximation of Cn and its exact value calculated via DFT. The inset
shows the squared magnitude of the FFT-based estimate of Cn. (b) The convergence of the average absolute error squared, and
the calculation time as a function of sample size. The black line shows the calculated error from samples drawn from a normal
distribution, the grey line shows N−1 convergence, the solid red line shows the calculation time from the FFT-based estimate, and
the dashed red line shows the calculation time from the direct calculation of Cn. (c) The (normalized) probability distributions of
increments, at various distances, from an fBm field with H=0.6 on a semilog plot. The inset shows the first–third order structure
functions from these distributions, which should vary as a power law for a self-similar field. Please refer to A for definitions of
terms. (d) The power-law exponents from the mth order structure functions. The grey line shows Hm = H ·m, which is expected for
an fBm field.

approximation error in the ECF, then E2 will be dominated by
ε , so E2 will have a lower bound of E2 ∼ O(ε2) ∼ O(10−14).
In this case, E2 for the FFT-based method should flatten out for
sample sizes larger than N ∼O(1014), since E2 ∝ N−1. This non-
convergence for extremely large sample sizes could be mitigated
by increasing the width of the Gaussian kernel (both h and q) to
achieve a more precise estimate of the DFT. For the analysis in
this manuscript, however, the sample sizes will not be so large
that E2 approaches its limit.

Figure 1b also shows the time required to perform the density
estimates from both the FFT-based method and the DFT method.
As described in Section 2, the FFT-based method scales as O(N ·
q+M · logM) whereas the direct method scales as O(N ·M). Be-
cause we use M = 2,049 for both methods and for all sample
sizes, both methods scale proportionally to N1 for large sample
sizes, as evinced by the parallel lines in Figure 1b. For sample
sizes larger than O(103), the FFT-based method is approximately
100 times faster than the DFT method. For an O(106) sample
size, the FFT method takes O(1) second versus the O(102) sec-
onds for the DFT calculation.

3.2 Increment PDF estimates from an fBm field

In anticipation of the analysis presented in Section 4, we
show a sample version of the same analysis applied to a dataset
with well-known properties that mimics the data to which this
method is applied in Section 4. The analysis in Section 4 has
two goals: (1) to determine whether velocity increments are dis-
tributed normally, and (2) to show that the width and moments of
the increment PDFs scale as a power-law of increment distance
(as expected for a field with self-similar, fractal behavior).

Because atmospheric velocities are known to exhibit statisti-
cal self-similarity in reality and in models [12, 13, 14], we ap-
ply the analysis to a realization of a fractional Brownian motion,
which is a type of self-similar field [15]. Fractional Brownian
motion (fBm) can be categorized as a type of ‘red-noise’ field
where the power spectrum of the field decays following a power-
law: i.e., P( f ) ∼ f−β , where P is the spectral power of the fBm
field, f is the Fourier frequency, and β is the scaling exponent.
fBm fields are characterized by their Hurst parameter H [15],
which is directly related to β for fBm fields by the relationship
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H = (β −1)/2 [16].
Davis et al. [16] define the mth-order structure function of a

field F as SF
m(∆x)≡ 〈|F(x)−F(x+∆x)|m〉, which is the mth (ab-

solute) moment of the PDF of increments calculated at distance
∆x (we define 〈. . .〉 as the average). For fBm fields, the structure
functions scale as a power-law of increment distance: SF

m(∆x) ∼
∆xHm . The exponent for the mth-order structure function Hm is
simply related to the Hurst exponent of the fBm field by Hm =
H ·m [17]. If we define the increment as ∆xF ≡F(x)−F(x+∆x),
then the mth-order structure function can be calculated from the
increment PDF by

SF
m(∆x) =

∫
∞

−∞

|∆xF |m ·P(∆xF)d∆xF ∼ ∆xH·m. (4)

Since the fBm field is generated based on samples drawn
from a normal distribution, it can be shown that the distribu-
tion of increments are also normally distributed [17]. There-
fore we expect P(∆xF) to be a normal distribution with variance
SF

2 (∆x)∼ ∆x2H , implying that

P(∆xF) =
1

σo∆xH√2π
· e−(∆xF)2/2(σo∆xH )2

, (5)

where σo is a constant of proportionality related to the total vari-
ance of the field F . This is the form of the PDF for any self-
similar field with increments that are normally distributed.

We use the method of Wood and Chan [18] to generate an
fBm field with H = 0.6 and 217 points. We apply the fast, self-
consistent density estimation method described in Section 2 to
estimate the PDF of increments at distances of 21 to 29 grid
points, with distance intervals that are integer powers of two. Fig-
ure 1c shows the PDF estimates of the standardized increments
f̂ (∆xF). The standardized increment PDFs (colored curves) over-
lap strongly and are consistent with a normal distribution with
zero mean and unit variance (the thick grey curve). The inset of
Figure 1c shows that the moments of the PDFs scale as power
laws (e.g., straight lines given log-log axes) of the increment dis-
tance. The structure functions are well-described by power laws
as expected from Equation 4. We estimate the exponents of the
structure functions using the York et al. [19] maximum likelihood
method in log-log space, and we show in Figure 1d that the ex-
ponents vary as Hm = 0.6 ·m as expected for an fBm field with
H = 0.6 [17].

As noted at the beginning of this section, the goal of this anal-
ysis is to show whether (1) increments are normally distributed,
and (2) the moments of the increment PDFs scale as a power-law
of increment distance. This analysis technique uses the fast, self-
consistent density estimation method as an efficient way of ver-
ifying that an fBm field has these characteristics. The standard-
ized PDFs overlap and are all consistent with a normal distribu-
tion, which provides evidence that the increments are distributed
normally. The approximate linearity of the structure functions
in the log-log inset of Figure 1c provides evidence that the in-
crement PDFs scale as a power-law of increment distance. And
finally, the linearity of the Hm vs m points shown in Figure 1d

provides further evidence that the increment PDFs are normally
distributed. It can be shown that the moments of the normal dis-
tribution follow the relationship

∫
∞

−∞
|x|mN (x)dx ∼ σm, where

σ is the width of the normal distribution. From Equation 5, the
PDF width is σ = σo ·∆xH , so the moments should follow the
relationship Mm ∼ σm ∼ ∆xH·m. Therefore the Hm = H ·m rela-
tionship demonstrated in Figure 1d is consistent with increments
that are normally distributed and have PDF widths that vary as
∆xH .

4 Application to atmospheric model output

In a forthcoming manuscript (O’Brien, T. A., W. D. Collins,
S. A. Rauscher, T. D. Ringler, M. Martini, W. Gustafson, and
P. Ullrich, Fractal velocity fields cause resolution dependent up-
drafts in variable resolution atmospheric models. Journal of Geo-
physical Research. In Prep.), we develop a theory relating the
distribution of vertical velocities (updrafts) in an incompress-
ible atmospheric model to the probability distribution of hori-
zontal velocity increments. We show that this theory predicts a
resolution-dependent broadening of the vertical velocity distribu-
tion in a variable-resolution atmospheric model. In particular, for
a self-similar horizontal velocity field with normally distributed
horizontal increments, the theory predicts that the mean magni-
tude of vertical velocities 〈|w|〉 is simply related to the grid spac-
ing ∆x by 〈|w|〉 ∼ ∆xH−1, where H is the Hurst exponent that
characterizes the self-similarity of the horizontal velocity field.

Our analysis of model output shows that the vertical veloc-
ity distribution broadens consistent with this ∆xH−1 relationship.
However, we have no a priori reason to expect that the horizontal
velocity increments are distributed normally, and so it is unclear
whether the observed broadening of the vertical velocity is truly
consistent with our prediction. In order to characterize the distri-
bution of horizontal velocity increments to evaluate this finding,
it is necessary to estimate the PDF of O(105) sets of O(106)
increment values. Given the amount of data reduction required
in our analysis, and in fact in many other applications, a suit-
able method for estimating the PDFs should be as fast as possible
to minimize the computational cost. The nuFFT-based improve-
ment introduced in Section 2 reduces the computational cost of
the BP11 method from approximately 102 seconds per estimated
PDF to 1 second per estimated PDF (when applied to 106 data
points). This reduces the computational cost of our analysis from
O(103) CPU hours (e.g., a month on a serial processor) to O(10)
CPU hours.

We apply the analysis presented in Section 3 to output from
an atmospheric model with an idealized setup. We use output
from the Community Atmosphere Model 4 (CAM4) [20], which
is a modular hydrostatic atmospheric model with a variety of pa-
rameterizations that simulate various processes important for at-
mospheric dynamics (e.g., radiative transfer, convection, precip-
itation, etc.). We use a version of CAM4 that includes the Model
for Prediction Across Scales atmospheric (MPAS-A) dynamical
core, which predicts the evolution of the atmosphere by evalu-
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ating conservation laws (e.g., conservation of mass, momentum,
etc.) on a centroidal Voronoi tesselation of the sphere [14, 21].

The MPAS-A dynamical core is capable of operating on nonuni-
form grids that can effectively zoom in on an area of interest,
which is one of the model’s distinguishing features. Initial eval-
uation of CAM4 with the MPAS-A dynamical core showed that
the model exhibits some distinctly resolution-dependent artifacts
[14, 22]. Subsequent analysis has shown that this resolution-
dependence may be linked to resolution dependence of the verti-
cal velocity field [23], and we have recently developed a theory
linking the resolution dependence of the vertical velocity field
to the self-similarity of the horizontal velocity field. The theory
relates the PDF of vertical velocities to the PDF of horizontal
velocity increments.

To characterize the distribution of horizontal velocity incre-
ments at the model’s highest resolution, we use the uniform-
resolution 30km simulation described by Rauscher et al. [14]. We
use one year of model output that is recorded for every 6 model
hours. To facilitate this analysis, we have interpolated the CAM4
output from the its native, unstructured grid to a grid with uni-
form latitudinal and longitudinal spacing that has approximately
the same 30km resolution as the native grid; in this grid, the globe
is divided into 768 latitudes and 1,152 longitudes. The model is
configured in accord with the aquaplanet protocol specified by
Neale and Hoskins [24], in which the surface of the simulated
planet is covered with water, and all boundary conditions are
specified with rotational (in the direction of planetary rotation)
and hemispheric symmetry. We leverage the rotational symmetry
by treating latitudinal bands at a given level (altitude) as statisti-
cally identical, which we use to improve our sampling statistics.

At each time, latitude, and level in the model output, we cal-
culate zonal velocity increments in the zonal direction (i.e., ∆xU ,
where U is the zonal wind velocity and x is the distance in the
zonal direction). We calculate increments at all grid spacings
that are powers of 2 between 20 to 210. We use the FFT-based
density estimation method described in Section 2 to calculate the
empirical characteristic function for each set of increments.

We parallelized the algorithm described in Section 2 by per-
forming steps (1–5) in parallel for each time slice. We perform an
additional step (60), in which we add the empirical characteristic
functions from each time slice (treating values at each specific
latitude and level separately) to obtain the empirical character-
istic function for zonal velocity increments for the full year of
model output. We then apply steps (6) and (8) to obtain the es-
timate of the probability density of zonal velocity increments for
each latitude and level. We use these probability densities to es-
timate the 1st through 9th absolute moments of each distribution,
which yield the 1st through 9th order structure functions of the
zonal velocity field (see Section 3.2).

Figures 2 a, d, and g show the estimated probability densi-
ties of the zonal velocity increments f̂ (∆xU) from three distinct
regions of the atmosphere: 40oS at the 700 hPa level (approxi-
mately 3 km altitude), 0oN at the 510 hPa level (approximately 5
km altitude), and 30oN at the 970 hPa level (approximately 400

m altitude). These increment probability distributions, which are
all standardized, overlap relatively well, which is consistent with
self-similar behavior. Figures 2 b, e, and h show the first abso-
lute moment of the increment distributions as a function of in-
crement distance (i.e., the first-order structure functions). In all
three figures, the first order structure functions exhibit approx-
imate power-law scaling over a relatively wide range of incre-
ment distances, which is also consistent with self-similar behav-
ior. The dashed gray lines in the figures show a power-law fit,
using the York et al. [19] maximum likelihood method, to the
structure functions for increment distances ranging between ap-
proximately 100 km and 500 km. We choose these bounds for
two separate reasons. For the lower bound, it is well known that
the diffusive properties of atmospheric models tend to dampen
variability for length scales ranging from one grid cell to ten grid
cells [13]. This effect manifests as a steepening of the first or-
der structure functions for the two smallest increment distances
(distances corresponding to 1 and 2 grid cells), so we restrict
the fit to increment distances that are greater than or equal to 4
grid cells, which is approximately 100 km. Additionally, since it
is hypothesized that there should be a scale-break for distances
greater than approximately 500 km (e.g., [12]), we restrict our fit
to increment distances less than or equal to this value.

We perform a similar power-law fitting procedure for the 1st

through 9th order structure functions. Figures 2 c, f, and i show
the estimated power-law slopes (the structure function exponents)
Hm as a function of structure function order m. As discussed
in 3.2, a self-similar field with normally-distributed increments
should have structure function exponents that scale linearly with
the structure function order, i.e.,: Hm = H1 ·m. Such monofrac-
tal scaling is shown as a solid gray line in Figures 2 c, f, and
i. The zonal velocity structure function exponents approximately
follow this monofractal scaling for the 1st and 2nd order structure
functions, but they diverge rapidly for the higher order exponents.
This divergence is characteristic of a multifractal field [16], and
it indicates that the zonal velocity increments are not distributed
normally.

It is also clear from comparing the estimated distributions
in Figures 2 a, d, and g with that of a unit normal distribution
(shown as a gray dashed curve in all three figures) that the es-
timated distributions do not overlap well with the normal distri-
bution. In exploring other potential distributions, we found that
the increment distributions closely matched a standard logistic
distribution– f (x) ∼ sech(x/2)–over a wide portion of the atmo-
sphere (shown as a solid gray curve in all three figures). However,
it is apparent in Figure 2g that some areas of the atmosphere have
zonal increment distributions that are quite positively skewed and
are therefore inconsistent with symmetric distributions like the
logistic distribution.

To demonstrate that the scaling properties of the zonal ve-
locity field vary throughout the atmosphere, Figures 3 a and b
show latitude-versus-height maps of H1, and the excess kurtosis
of the increment PDFs. (It is conventional in atmospheric sci-
ences to express heights in terms of atmospheric pressure, which
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Figure 2: (a,d,g): Standardized zonal velocity increment distributions at various distances compared with a normal distribution
(dotted gray line) and a logistic distribution (solid gray line); (b,e,h): their first order structure functions (blue dots) compared with
a power law fit (dashed gray line); and (c,f,i): estimated exponents for the 1st through 9th order structure functions compared with
the monofractal Hm = m ·H1 relationship (solid gray line). Subfigures (a–c), (d–f), and (g–i) are grouped by location (see Figure 3,
which marks these as locations 1, 2, and 3 respectively). Their locations are, respectively: 40oS at the 700 hPa level (approximately 3
km altitude), 0oN at the 510 hPa level (approximately 5 km altitude), and 30oN at the 970 hPa level (approximately 400 m altitude).

decreases monotonically with height.) We calculate the excess
kurtosis, γ2 as follows:

γ2 =
〈|∆xU |4〉
〈|∆xU |2〉2

−3, (6)

and we average the excess kurtosis from increment distributions
with increment distances ranging from approximately 100 km to
500 km (the same range as used in the power-law fit described
previously).

Figure 3a shows that the first order structure function H1
varies systematically throughout the atmosphere, with relatively
small values near 0o latitude and relatively large values near 40o

N/S. This is consistent with the first-order structure function of
the water vapor field reported by Pressel [25] for a similar model
configuration. It shows that the (modeled) atmosphere is not
well-characterized by a single scaling exponent, as suggested
by Nastrom and Gage [12], but that the fractal behavior of the
atmosphere ranges from anti-persistent (H1 < 0.5) to persistent
(H1 > 0.5) depending on location.

Further, the excess kurtosis, γ2, which is a parameter that de-
scribes the ‘peakedness’ of a distribution relative to the normal
distribution, also varies throughout the atmosphere. Figure 3b
shows that γ2 varies from approximately 1 at 0o latitude to ap-
proximately 7 near 30o N/S. A normal distribution is character-
ized by zero excess kurtosis, whereas distributions with sharper
peaks and fatter tails (relative to the normal distribution) have
positive excess kurtosis. The logistic distribution has γ2 = 1.2,
which is consistent with values over a wide area of the equator.

Interestingly there are zones of high kurtosis near 1000 mb
at approximately 30o N/S; these leptokurtic zones are associated
with positive skew. Examination of Figure 2g, which shows the
estimated increment distributions from this high-kurtosis zone,
reveals that the negative half of the distribution overlaps reason-
ably well with the normal distribution, whereas the positive half

of the distribution has wide tails. This positively skewed distri-
bution reflects an abundance of zones in which the wind speed
tends to accelerate in the eastward direction, which is indicative
of a force acting in that direction. That this skewed distribution
occurs in the midlatitudes (near 30o latitude), where the effect
of Earth’s rotation becomes important, suggests that the Coriolis
force may be the cause of the skewed distribution.

5 Discussion

5.1 Improving the speed of ECF-based methods using the FFT

While we could have used other methods of density estima-
tion, such as binning or traditional kernel density estimation, the
Bernacchia and Pigolotti [1] method avoids the complication of
having to choose either bin width or kernel bandwidth, which
is a subjective choice when faced with data from an unknown
distribution. The Bernacchia and Pigolotti [1] method simulta-
neously and objectively determines both the optimal shape and
optimal bandwidth for a kernel density estimate. However, be-
cause the Bernacchia and Pigolotti [1] method involves a trans-
formation from data-space to Fourier-space (i.e., calculation of
the empirical characteristic function), the method is quite slow if
the empirical characteristic function is calculated using a direct
Fourier transform. We show in Sections 2 and 3 that replacing
the direct Fourier transform with a nonuniform FFT can dramati-
cally increase the speed of the method without compromising the
accuracy of the method.

As far as we are aware, no authors have explored the use of
nonuniform FFT methods for calculating empirical characteristic
functions (ECFs) in general, even though empirical characteristic
functions have a wide variety of uses, including: testing for dis-
tribution symmetry [26], testing for data independence [27, 28],
testing whether data belong to a given distribution family [6, 29],
testing whether two sets of data belong to the same family [30],
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Figure 3: (a): A latitude vs. height map of the estimated power
law exponent from the first order structure function of the zonal
velocity increments. The gray contours depict lines of constant
zonal velocity (m/s) to show the location of the midlatitude jet
streams. (b) A latitude vs. height map of the excess kurtosis (see
text for definition) of the increment PDFs; for reference, a nor-
mal distribution has zero excess kurtosis. In both figures, the
black numbers 1, 2, and 3 indicate the locations, respectively,
from which Figures 2 (a–c), (d–f), and (g–i) are calculated.

and model fitting [31, 32, 33]. While the results in Figure 1b
show timings for the full BP11 density estimation, the compu-
tational time of the method is dominated by calculation of the
ECF. The results in Figure 1 (and the order-of-magnitude calcu-
lations presented in Section 2.3) show that the nonuniform FFT
can increase the calculation speed of the ECF by two orders of
magnitude while keeping the approximated ECF accurate to the
7th decimal place.

The nonuniform FFT could be especially beneficial for calcu-
lating the ECF of multidimensional datasets. In this manuscript,
our use of the nonuniform FFT method is limited to one-dimensional
data, since the BP11 density estimation has so far only been
developed for univariate data. However, the nonuniform FFT
method is also applicable to multidimensional transforms [9],
and so the idea developed in this manuscript could easily be ex-
tended to multidimensional data. For N sets of d-dimensional
data, direct calculation of the ECF onto a Fourier grid with M

frequencies in each dimension requires O(d ·N ·Md) calcula-
tions. On the other hand, a nonuniform FFT method that uses a
q-point convolution requires O

(
N ·qd +Md · log(Md)

)
calcula-

tions. Following the same assumptions in Section 2.3 (q <M and
logM� N) the nonuniform FFT method is roughly O

(
(M/q)d

)
times faster than the direct calculation. Both the direct and nuFFT
ECF calculation methods suffer a ‘curse of dimensionality’ (i.e.,
the computational complexity scales as a power of the dimen-
sionality), but the nonuniform FFT method reduces the negative
impact of increased dimensionality by only applying the convolu-
tion to a relatively small qd hypercube of points surrounding each
datum. For M/q ∼ O(100), as in this manuscript, an FFT-based
calculation of the ECF for bivariate data would be O(10,000)
times faster than the direct calculation.

5.2 Summary

The analysis in Section 4 shows that the zonal velocity incre-
ments in our atmospheric model output have increments that are
clearly not distributed normally (Figures 2 a, d, and g) and that
the field is multifractal (Figures 2 c, f, and i). Based on the excess
kurtosis values shown in Figure 3b, no portion of the model’s
atmosphere has increments that are normally distributed. This
analysis has shown that our theory relating the self-similarity of
the horizontal wind field to the distribution of vertical veloci-
ties, which was developed based on a wind field with normally
distributed increments, needs to be generalized to account for a
broader range of distributions. The ability to rapidly and robustly
characterize the zonal velocity increment distributions has thus
proved invaluable for helping us advance our scientific work.

This manuscript generally shows that nonuniform FFT meth-
ods can be used to dramatically reduce the computational cost of
the empirical characteristic function. Though this manuscript fo-
cuses specifically on the case of using the nonuniform FFT to im-
prove the ECF calculation stage of the Bernacchia and Pigolotti
[1] estimation method, this method should be applicable to other
ECF-based methods. We posit that the nonuniform FFT would
especially reduce the computational cost of multidimensional ECF
calculations: potentially by a factor of O(100d) for d-dimensional
data.

If the BP11 method can be extended to multidimensional
data, then a nonuniform FFT method could be used to dramat-
ically decrease the computational time of the method. Combined
with the nonuniform FFT, a multidimensional BP11 method could
provide an objective, fast, and robust way to estimate multivari-
ate probability distributions. For the purposes of atmospheric re-
search, such a method could be invaluable for characterizing the
interdependency of atmospheric state variables. For example, a
multidimensional BP11 estimate of the joint velocity, humidity,
and enthalpy PDF could provide a non-parametric method for
estimating subgrid fluxes that is complementary to existing para-
metric methods (i.e., [34]), which are known to depend on the
shape of the assumed PDF [35]. While Bernacchia and Pigolotti
[1] suggest that their method readily extends to multiple dimen-
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sions, special care will be required to develop multidimensional
frequency filters (i.e., In in Section 2.3), since neither the filter
used in this paper nor the filter used by Bernacchia and Pigolotti
[1] have simple multidimensional analogs.

The BP11 self-consistent density estimation method is an ob-
jective and robust way to estimate the underlying distribution of
univariate data. As we show in this manuscript, use of a nonuni-
form FFT can reduce the computational cost of the method by a
factor of approximately 100. This modification makes the BP11
method fast relative to human timescales: it requires less than
a second to estimate the PDF of 105 data points using Python
code on a modern PC. This makes the FFT-based BP11 method
a viable alternative to histogram-based methods in data analysis
software (e.g., SciPy or R). Toward this goal, the lead author is
working with his home institution to release the code used in this
manuscript under a free (e.g., GNU) license, so that he may pur-
sue including it in the SciPy stats package.

A Definition of terms

velocity increment: the difference between two points in a field
at a given distance: ∆xF ≡ F(x)−F(x+∆x).
structure function, mth-order: the mth moment of the increment
distribution, as a function of increment distance: 〈|∆xF |m〉.
resolution: the physical size of a grid element in an atmospheric
model. Unless otherwise specified, this typically refers to the
horizontal size of grid elements.
vertical velocity: the velocity of air in the direction perpendicu-
lar to the Earth’s surface.
horizontal velocity: the velocity of air in the directions parallel
to the Earth’s surface.
zonal velocity: horizontal velocity in the direction parallel to the
direction of Earth’s rotation (i.e., parallel to lines of latitude).
fractal velocity field: a velocity field that is statistically self-
similar. The statistical distribution of velocities has the same ba-
sic form regardless of the physical scale at which the distribution
is calculated, and whose width is a power-law of the physical
scale. The structure functions of such a field are power laws of
the increment distance.
Hurst exponent, H: an exponent that characterizes the proper-
ties of a monofractal field.
monofractal field: a field in which the increments are normally
distributed. The moments of the field are given by 〈|∆xF |m〉 ∼
∆xH·m.
multifractal field: a field in which the increments are not nor-
mally distributed. The moments of the field are given by 〈|∆xF |m〉∼
∆xH (m), where H (m) is a non-linear function of the structure
function order.
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